
1 1996 ISP Encyclopediagaltools_02

GAL Hardware and Software Tools

Lattice Semiconductor specializes in the design and
manufacture of high-speed E2CMOS® programmable
logic devices. While we distribute the ABEL compiler with
our Synario software solutions, we’ve left the task of
developing GAL design software and programming hard-
ware to the respective third-party experts in those fields.

Such universal tool suppliers provide support for all major
devices, from a variety of manufacturers. If you’re just
starting out with programmable logic and plan to pur-
chase development tools, rest assured that
industry-standard hardware and software will handle
GAL device development. If you’re already using stan-
dard tools for PLD development, the move to GAL devices
won’t require sophisticated or expensive upgrades; cur-
rent third-party development tools support Lattice GAL
devices to their full extent. At most, an upgrade to the
current revision of the support tool may be required.

Lattice’s Applications Department remains on call to
assist you in the task of logic development using third-
party tools. Our engineers, trained on a variety of standard
equipment, are prepared to answer any questions you
may have. In addition, they are able to use the tools to
more fully exploit the unique benefits of GAL devices.
Here we provide the basis for getting started with GAL

devices. As you proceed with the development of your
applications, call us — we’d like to hear how it's going.

The typical PLD design flow, shown in Figure 1, begins
with a design specification, iterates the logic to achieve
proper functionality, and ends with a ‘download’ of the
information to a programming fixture that patterns the
device for the system. Critical to the accuracy and ulti-
mate success of the PLD design process is the use of
logic development tools to minimize the chance of error
and improve design efficiency.

Software Tools

In the early days of programmable logic devices, fuse
maps were entered by hand on a piece of paper with a
fuse map table, and then manually transferred into the
hardware programmers. This basic concept of fuse map
generation is still valid for modern devices, such as
Lattice’s GAL devices or any other PLDs, but the soft-
ware tools have greatly advanced from those early days.
Although the final result of any software tool is the
generation of a fuse map, there are many methods in
which logic designs can be entered. Most third-party
logic compiler software environments offer Boolean equa-
tion, truth table and state machine design entry methods.
These three basic design entry methods vastly improved
the efficiency and accuracy of logic design. To further
improve efficiency of design entry, newer software pack-
ages offer schematic entry, macro library, timing waveform
and hardware description language (HDL) design entry
methods. By combining these multiple design entry
methods within each third-party software package, sys-
tem design engineers are able to select the method that
suits his or her logic design. Accuracy of the logic
implementation is further improved by the ability to per-
form functional and timing simulation within the software.

Software packages, such as Synario/ABEL from Data
I/O, CUPL from Logical Devices, PLDesigner from Minc
and PLD 386+ from OrCAD, provide various combina-
tions of the above mentioned design entry methods. With
these software packages, the required logic design can
be fully designed, simulated, and debugged using soft-
ware, before any hardware is built. All of these software
packages perform a similar function. They process and
synthesize the design idea entered by the specified
method, convert this result into an intermediate file, such
as netlist or PLA file, and finally generate the fuse map file
for the programmer. As part of this process, a documen-
tation file is also created. As we move into the future with

Figure 1. PLD Design Flow

DEBUG

EDIT

EDIT

START

DEFINE LOGIC

COMPILE/ASSEMBLE

 SIMULATE/TEST

DOWNLOAD AND PROGRAM

DOCUMENT

COMPLETE

Using GALi
Development Tools

®

2 1996 ISP Encyclopedia

Using GAL Development Tools

higher density PLDs, third-party supplied universal soft-
ware tools are becoming an integral part of the hardware.

Hardware Tools

The same arguments as those expressed above for
universal software tools apply to universal hardware.
Hardware developed by third parties is more flexible and
provides a future growth path to the user. While Lattice
recommends the use of In-System Programmable™
devices for almost any application, third-party program-
ming hardware for standard GAL device programming is
quite mature and of high quality.

Universal programming hardware allows the program-
ming of a variety of devices without the aid of custom
fixtures or manufacturers’ adapters. Since the GAL pro-
gramming algorithm requires no abnormal voltages or
timings, as some one-time programmable technologies
do, most all hardware manufacturers support GAL de-
vices on existing models.

Patterning the PLD is the process of providing it with the
data (the JEDEC file) to perform a specific custom
function, and applying the appropriate series of voltage
pulses. ‘Support’ by the hardware manufacturer refers to
his ability to provide the appropriate voltage pulses and
timings for a given PLD. After that, patterning a device
merely requires downloading the JEDEC file.

Downloading is the process of ‘teaching’ the hardware
programmer the pattern that is necessary to program a
device. This data can come from a pre-patterned device
(or ‘master’), from a computer via direct connection or
modem or from an attached peripheral, such as a floppy
disk. If the file is transferred in JEDEC format, as most
are, a checksum is calculated and verified at the end of
the data transfer to ensure that no data was dropped or
garbled during transmission. Most programmers have
either a single button or simple command string that puts
the hardware into the download mode.

The programming of the GAL device is controlled by the
programming hardware. Since the GAL device uses a
nonvolatile, reprogrammable E2CMOS technology, the
device can be erased. In fact, the device is automatically
erased as the first step in the programming algorithm.

The patterning of the GAL device array is done using a
parallel-programming scheme, which keeps the total
programming time to well under a second. The algorithm
is so efficient that it programs devices nearly 50% faster
than typical bipolar PLD algorithms, and an order of
magnitude faster than UV-CMOS approaches. During
this programming time, both the logic array and the
architecture matrix are patterned.

Finally, an analog verify of each and every cell in the GAL
device takes place, to ensure that the cell is fully pro-
grammed and will retain data for a minimum of 20 years.

It is worth noting here that GAL devices offer a security
cell that can be programmed to prevent examination (or
further verification) of the pattern in the programmable
arrays — a feature provided so that a proprietary design
can be obscured from competitive or enemy eyes.

Somewhat ironically, the GAL device security cell is itself
erasable. It can only be erased, however, in conjunction
with an array ‘Bulk Erase,’ during which all bits are
cleared at once. This allows the designer or manufactur-
ing person to reuse previously secured devices — a
feature never before available in PLDs.

Debugging and Pattern Revisions

GAL devices bring extensive advantages to the manu-
facturing and design engineering areas, due to their
unique combination of E2CMOS technology, generic
architecture, and unmatched quality levels. Only GAL
devices are instantly erasable in a standard hardware
programming fixture. As mentioned, erasure takes place
automatically just prior to the re-patterning of the array.
No time-consuming trips to a UV lamp are necessary, as
with UV-erasable PLDs. Both the GAL device’s logic
array and device architecture configuration are fully
reprogrammable and reconfigurable. In addition, the
erasable GAL device is assembled in a low-cost plastic
package, not an expensive quartz-windowed package.
Pattern revisions can be recorded in the device’s elec-
tronic signature, allowing the traceability, tracking and
verification of every device. Finally, inventories are kept
to a minimum, thanks to the generic ‘one device fits all’
macrocell approach.

The Design Process

By choosing generic, compiler-based software, generic
hardware and generic silicon (Lattice GAL devices), the
biggest decisions in the design process have already
been made. The choice of the appropriate programmable
logic device has traditionally been a difficult first step in
starting a design, since with bipolar PLDs, you must
guess which one of the dozens of architectures has the
right combination of outputs, I/Os and registers. If your
choice is wrong, you must guess again. The Lattice GAL
concept simplifies the approach, requiring that you merely
count the number of inputs and outputs, then select a
speed/power option. The development software auto-
matically and dynamically allocates the inputs, I/Os,
registers and so on.

3 1996 ISP Encyclopedia

Using GAL Development Tools

The following design example shows how to implement
two basic logic gates in a GAL device. The specific syntax
is that of ABEL-HDL; however, other generic software
(CUPL) has similar syntax and functions. In this cursory
‘walk-through,’ segments of code are presented as they
would appear on the screen of a personal computer
running Synario/ABEL software. The manufacturers of
the software would, of course, be glad to provide a more
comprehensive tutorial.

All the design processes are envoked from the Synario/
ABEL design environment. The Synario Project Naviga-
tor allows the user to select devices, edit source files and
schematics, and keep track of simulation vectors and
results in a single design tracking environment.

Once you open a new design file and select a device, as
shown in Figure 2, fields are provided for optional infor-
mation, such as the design title and source file names.

The device, its pinout, pin labels, and intermediate vari-
ables need to be specified next. Use names that are
convenient for you to reference, since the software doesn’t
care what you call a pin, as long as you are consistent:

 gates device 'p16v8';

"**** inputs ****

 A, !B PIN 1,2;

"**** outputs ****

 Y, !Z PIN 18,19 ISTYPE
'COM,INVERT';

"**** intermediate definitions ****

 C,X,H,L=.C.,.X.,1,0;

It’s a good idea to specify pin names in a format consis-
tent with the actual pin state. In the above pin definitions,
signals A and Y are active-high, while B and Z are active-
low. We have chosen to indicate active-low data signals
by prefixing the labels with exclamation points in the
definition statement. The use of an active-high variation
of these signals in subsequent design statements will
automatically be resolved by the software compiler.

Entry of the logic functions is next. This entry is in the form
of Boolean equations, truth-table, state machine and
schematic-entry formats.

Figure 2. Synario Project Navigator and Device Selection Dialog Box

4 1996 ISP Encyclopedia

Using GAL Development Tools

Figure 3. Linking and Fuse Map Creation in Synario

Here, the Boolean equation-entry format is used to cre-
ate an AND function on Y (pin 18) and an XOR function
on Z (pin 19). Since Z has been defined as an active low
signal, however, we will actually end up with XNOR on pin
19:

"**** logic equations ****

equations

 Y = A & B;

 Z = A & B # !A & !B;

The operators used in the ABEL language are ‘!’ for
invert, ‘&’ for the AND function and ‘#’ for the OR function.
The equations are written exactly as needed. All of the
inversions for active-low inputs and outputs will be auto-
matically resolved, a routine procedure for compiler
software. Although these are simple equations, had they
been complex ones that needed automatic reduction to a
specific number of product terms for a given PLD, the
software would have performed the reduction, as well.

When a design source file is complete, the Compile Logic
Menu options compile the source file where various input
file formats are converted to equation format. Next, the
Reduce Logic Menu option minimizes the equations.

The last step of the process is to generate the JEDEC
fusemap under the Create Fuse Map Menu. JEDEC, a

standards organization with representatives from major
semiconductor companies on its committees, has ap-
proved a standard for the interchange of PLD data. The
JEDEC file is used as the medium of transfer from the
development computer environment to that of the hard-
ware device programmer. Included in the file are control
bits that determine the status of security cells or fuses,
test vectors, and data-transmission checksums. (The
JEDEC standard is available from Lattice Semiconductor
upon request.) A portion of the JEDEC file for our ex-
ample is reproduced here:

QP20* QF2194* QV8* F0*

 X0*

NOTE Table of pin names and numbers*

NOTE PINS A:1 B:2 Y:18 Z:19*

L0000 10011111111111111111111111111111*

L0032 01101111111111111111111111111111*

L0256 10011111111111111111111111111111*

L2048 01000000*

L2128
11*

L2192 1*

C13DA*

5 1996 ISP Encyclopedia

Using GAL Development Tools

Figure 4. Compilation and Logic Optimization in Synario

The purpose of the file is to provide a hard-copy docu-
mentation of the final (reduced) equations, the cell map
or ‘fuse plot,’ and a chip-pinout diagram, if desired (see
Listing 1).

Example: Two-Story Elevator Controller

This example is designed to step the reader through the
process of creating and implementing a logic design
using GAL devices. Whether a novice or intermediate
user of PLDs, you are encouraged to familiarize yourself
with this section and the GAL application notes, which
provide examples of how to implement basic functions
such as decoders, shifters, multiplexers, counters, etc.

Here we will be building a two-story elevator control unit.
The function of the unit is to monitor the state of the call
buttons, respond to calls for service, and display the
status of the elevator by means of floor and direction
displays. The operating control function requires a small
state machine and a latch function, while the display logic
uses only combinational circuits.

Our elevator travels between two floors. Arriving at a floor
in response to a call for service, the elevator opens its
doors, pauses, then closes them automatically. If the up
or down button is pushed, the elevator travels to the other
floor. A microswitch mounted on the car informs the
controller that the elevator has arrived at a new floor.

Once the elevator arrives at a floor to discharge passen-
gers, it opens its doors, pauses to let the passengers out,
then closes the doors and assumes its wait position. A

Test vectors, which indicate the stimulus and response
for a PLD, serve primarily to validate the functionality of
a design source file. The ABEL compiler simulates the
source file so that only properly functioning patterns are
programmed into a PLD for system debug. In our basic
gates example, the simulation routine provides the ex-
pected data:

"**** test vector definition ****

test_vectors

([A,B] -> [Y,Z]);

 [0,0] -> [L,X]; "**** test AND gate ****

 [0,1] -> [L,X];

 [1,0] -> [L,X];

 [1,1] -> [H,X];

 [0,0] -> [X,H]; "**** test XNOR gate ****

 [0,1] -> [X,L];

 [1,0] -> [X,L];

 [1,1] -> [X,H];

end

While some PLD manufacturers claim that test vectors
are also necessary for verifying functionality of the inte-
grated circuit after programming, Lattice E2CMOS GAL
devices are fully tested and guaranteed to yield 100% all
of the time.

Once the JEDEC fusemap is generated, the design is
ready to be programmed into a device. Synario/ABEL
also generates a documentation file (.REP) for the design
which can be viewed under the Chip Report Menu option.

6 1996 ISP Encyclopedia

Using GAL Development Tools

Listing 1. Synario/ABEL Documentation File

SYNARIO - Device Utilization Chart

Tutorial Using a GAL16V8
 Lattice Semiconductor
--
Module : 'gates'
--
Input files:
 ABEL PLA file : gates.tt3
 Vector file : gates.tmv
 Device library : P16V8AS.dev

Output files:
 Report file : gates.doc
 Programmer load file : gates.jed

P16V8AS Programmed Logic:
--
Y = (A & !B);
Z = !(A & !B
 # !A & B);

P16V8AS Chip Diagram:
--

 P16V8AS

 +---------\ /---------+
 | \ / |
 | ----- |
 A | 1 20 | Vcc
 | |
 B | 2 19 | !Z
 | |
 | 3 18 | !Y
 | |
 | 4 17 |
 | |
 | 5 16 |
 | |
 | 6 15 |
 | |
 | 7 14 |
 | |
 | 8 13 |
 | |
 | 9 12 |
 | |
 GND | 10 11 |
 | |
 | |
 `---------------------------'
 SIGNATURE: N/A

7 1996 ISP Encyclopedia

Using GAL Development Tools

P16V8AS Resource Allocations:
--
 Device | Resource | Design | Part |
 Resources | Available | Requirement | Utilization | Unused
======================|===========|=============|=============|==============
 | | | |
Dedicated input pins | 10 | 2 | 2 | 8 (80 %)
Combinatorial inputs | 10 | 2 | 2 | 8 (80 %)
Registered inputs | - | 0 | - | -
 | | | |
Dedicated output pins | 2 | 2 | 0 | 2 (100 %)
Bidirectional pins | 6 | 0 | 2 | 4 (66 %)
Combinatorial outputs | 8 | 2 | 2 | 6 (75 %)
Registered outputs | - | 0 | - | -
Two-input XOR | - | 0 | - | -
 | | | |
Buried nodes | - | 0 | - | -
Buried registers | - | 0 | - | -
Buried combinatorials | - | 0 | - | -

P16V8AS Product Terms Distribution:
--
 Signal | Pin | Terms | Terms | Terms
 Name | Assigned | Used | Max | Unused
===============================|==========|=======|=======|=======
Y | 18 | 1 | 8 | 7
Z | 19 | 2 | 8 | 6

 ==== List of Inputs/Feedbacks ====

Signal Name | Pin | Pin Type
============================== |==========|=========
A | 1 | INPUT
B | 2 | INPUT

P16V8AS Unused Resources:
--
 Pin | Pin | Product | Flip-flop
Number | Type | Terms | Type
=======|========|=============|==========
 3 | INPUT | - | -
 4 | INPUT | - | -
 5 | INPUT | - | -
 6 | INPUT | - | -
 7 | INPUT | - | -
 8 | INPUT | - | -
 9 | INPUT | - | -
 11 | INPUT | - | -
 12 | BIDIR | NORMAL 8 | -
 13 | BIDIR | NORMAL 8 | -
 14 | BIDIR | NORMAL 8 | -
 15 | OUTPUT | NORMAL 8 | -
 16 | OUTPUT | NORMAL 8 | -
 17 | BIDIR | NORMAL 8 | -

Listing 1. Synario/ABEL Documentation File, Continued

8 1996 ISP Encyclopedia

Using GAL Development Tools

CLK

CALL

BUTTONS

LATCH DATA

DOOR

CONTROL

MOTION

CONTROL

DIRECTION

CONTROL

FLOOR

DISPLAY

DIRECTION/

CALL DISPLAY

GAL16V8

State

Control

GAL16V8

Display

Control

UP

DOWN

OPEN

2CALL

1CALL

2

3

Figure 5. Block Diagram

Table 1. SR Latch Truth Tablecall for service at the floor where the elevator is resting
will result in the doors being opened.

A free-running clock controls the elevator’s operation,
toggling every 5 to 10 seconds to allow a brief pause
during each arrival and departure activity. While this slow
clock rate is appropriate for the timing of the elevator
doors and car movement, it is far too slow to capture a
time-independent call for service. As such, a latch func-
tion that captures data instantly (actually, within 25 ns for
the GAL16V8B-25) is designed using two of the GAL
device macrocells.

As shown in Figure 5, the total elevator control unit uses
two GAL16V8s — one to perform the actual control
function, the other to handle the display.

The control of the elevator consists of two basic func-
tions: the call-button latches and the state machine. The
latches, constructed from the GAL device’s available
AND and OR gates (instead of using the on-chip D-type
register), are instantaneous and not dependent on a
clock for holding data. The truth table of the S-R latch
used is shown in Table 1. As shown in the truth table, the
latch is set by applying a logic 1 to SET, and reset by
applying a logic 1 to RESET. Applying a logic 0 to both
inputs causes a hold state, while applying a logic 1 to both
is undefined for this type of latch. The various call signals

(UCALL, DCALE, OCALL, 1CALL, 2CALL) are applied to
the two latches to command the elevator to travel to the
requested floor.

The first step in this GAL implementation is to translate
the functional operation of the elevator (described in the
text in the preceding paragraphs) to a logical format. This
is realized through the use of a state-transition diagram,
which literally describes all the allowed stable states (on
floor two, doors open, etc.) that our elevator can be in. An
unacceptable state, for example, would be resting be-
tween floors.

Figure 6 shows the state-transition diagram. Inside each
state circle, the diagram indicates the state name (top
half) and the condition of each of the state variables:
DOOR, MOTION, and DIRECTION. The transitions out
of the state are shown with the logic level requirements
to make the transition. Also shown is the destination of
each of the transfers.

The latched signals L1CALL and L2CALL are used to
start the states changing. The ARRIVAL input tells the car
when to stop its motion. The normal wait state of the
elevator is either CLOSE1 or CLOSE2 (not moving with
door closed).

The information is then transferred from the transition
diagram to the ABEL state-machine syntax, shown in
Listing 2. Notice the use of defaults in the state syntax to
indicate what state should be selected (or held) if none of
the criteria for exit is met. There is also an identifiable 1-
to-1 correspondence from the state transition diagram to
the state-machine syntax. The portion of the documenta-
tion file which includes reduced equations is shown in
Listing 3. Notice that the compiler automatically chose
the proper polarity to fit the reduced equations into the
GAL device, using DeMorgan’s Law: pins 12, 13, and 14
are inverted, relative to the other output pins.

Display Design

The source file for the up/down arrow display is shown in
Listing 4. The UPARROW is active only when the car is
moving up. DNARROW is true only when the car is

teS teseR tuptuO tuptuO tuptuO tuptuO tuptuO tuptuO

0 0 dloH dloH

0 1 0 1

1 0 1 0

1 1 dilaVtoN

9 1996 ISP Encyclopedia

Using GAL Development Tools

REST1

ARRIVE

ARRIVE

2CALL OR UP

1CALL OR

DOWN

1CALL OR

DOWN

2CALL OR

OPEN

1CALL OR DOWN

2CALL OR UP

2CALL

OR UP

1CALL

OR OPEN

OPEN,

WAIT, UP

REST2

OPEN,

WAIT,

DOWN

DOWN

CLOSE,

MOVE,

DOWN

CLOSE,

MOVE,

DOWN

CLOSE2

CLOSE1

CLOSE,

WAIT, UP

UP

CLOSE,

MOVE,

UP

Figure 6. State-Transition Diagram

moving down. The common bar, SEGARROW, is active
during any call, in any direction. This signal is also active
when an unserviced call is active. As such, the
SEGARROW signal is a call waiting indicator that ac-
knowledges a call button being pushed. The logic
equations for the arrow functions are self-explanatory; its
input signals come from the controller.

The floor indicator is a simplified decoder. A truth table
input format is used for the design. Notice that a floor is
always indicated, and that the change occurs when the
direction bit changes. This bit is constrained by the state
machine to change only when the car arrives at a floor.
The documentation file showing the reduced equations is
reproduced in Listing 5.

10 1996 ISP Encyclopedia

Using GAL Development Tools

Listing 2. Design Input File for Control Section

module elev_ctl
Title 'Two Story Elevator Control Logic Example Using a GAL16V8
 Lattice Semiconductor
 ABEL Source File'

"**** inputs ****
CLK,!OE PIN 1,11;
CALL1,CALL2 PIN 2,3; "Buttons on Floors
" Up ,Down ,Open
UCALL,DCALL,OCALL PIN 4,5,6; "Buttons in Elevator
ARRIVE PIN 7; "Floor Arrival Sensor

"**** outputs ****
DOOR PIN 12 ISTYPE 'REG_D,INVERT'; "0=Open, 1=Close
MOTION PIN 13 ISTYPE 'REG_D,INVERT'; "0=Wait, 1=Move
DIRECTION PIN 14 ISTYPE 'REG_D,INVERT'; "0=Up , 1=Down

L1CALL,L1CALL_ PIN 16,17 ISTYPE 'COM,INVERT'; "Latched call to 1st floor
L2CALL,L2CALL_ PIN 18,19 ISTYPE 'COM,INVERT'; "Latched call to 2nd floor

"**** state definitions ****
CONTROL = [DOOR,MOTION,DIRECTION];

REST1 = ^B000;
CLOSE1 = ^B100;
UP = ^B110;
REST2 = ^B001;
CLOSE2 = ^B101;
DOWN = ^B111;

"**** intermediate definitions ****
C,X,H,L=.C.,.X.,1,0;

FLOOR1 = DIRECTION.FB;
FLOOR2 = !DIRECTION.FB;

"**** logic equations ****
equations

L1CALL = !(L1CALL_ # CALL1 # (FLOOR1 & OCALL)
 # (FLOOR2 & DCALL));
L1CALL_ = !(L1CALL # (!DOOR.FB & !MOTION.FB & !DIRECTION.FB));
L2CALL = !(L2CALL_ # CALL2 # (FLOOR2 & OCALL)
 # (FLOOR1 & UCALL));
L2CALL_ = !(L2CALL # (!DOOR.FB & !MOTION.FB & DIRECTION.FB));

CONTROL.CLK = CLK;

"**** state machine definition ****
state_diagram CONTROL
state REST1: if (L2CALL) then UP;
 else CLOSE1;
state CLOSE1: if (L2CALL) then UP;
 else if (L1CALL) then REST1;
 else CLOSE1;
state UP: if (ARRIVE) then REST2;
 else UP;
state REST2: if (L1CALL) then DOWN;
 else CLOSE2;
state CLOSE2: if (L1CALL) then DOWN;
 else if (L2CALL) then REST2;
 else CLOSE2;
state DOWN: if (ARRIVE) then REST1;
 else DOWN;

end

11 1996 ISP Encyclopedia

Using GAL Development Tools

Listing 3. Expanded Product Terms for Control Section

L1CALL = (!DIRECTION.Q & !L1CALL_ & !CALL1 & !OCALL
 # DIRECTION.Q & !L1CALL_ & !CALL1 & !DCALL);

L1CALL_ = !(DIRECTION.Q & DOOR.Q & MOTION.Q
 # L1CALL);

L2CALL = (DIRECTION.Q & !OCALL & !L2CALL_ & !CALL2
 # !DIRECTION.Q & !L2CALL_ & !CALL2 & !UCALL);

L2CALL_ = !(!DIRECTION.Q & DOOR.Q & MOTION.Q
 # L2CALL);

DOOR.D = (!DIRECTION.Q & !DOOR.Q & MOTION.Q & !L1CALL & L2CALL
 # DIRECTION.Q & !DOOR.Q & MOTION.Q & L1CALL & !L2CALL
 # !DOOR.Q & !MOTION.Q & ARRIVE); " ISTYPE 'INVERT'
DOOR.C = (CLK);

MOTION.D = (!DIRECTION.Q & MOTION.Q & !L1CALL
 # DIRECTION.Q & MOTION.Q & !L2CALL
 # !DOOR.Q & !MOTION.Q & ARRIVE); " ISTYPE 'INVERT'
MOTION.C = (CLK);

DIRECTION.D = (DIRECTION.Q & MOTION.Q
 # !DIRECTION.Q & !DOOR.Q & !MOTION.Q & ARRIVE
 # DIRECTION.Q & !DOOR.Q & !ARRIVE); " ISTYPE 'INVERT'
DIRECTION.C = (CLK);

Listing 4. Design Input File for Display Section

module elev_dsp
Title ‘Two Story Elevator Display Logic Example Using a GAL16V8
 Lattice Semiconductor
 ABEL Source File’

“**** inputs ****
L1CALL,L2CALL PIN 2,3; “Call Status
MOTION,DIRECTION PIN 4,5; “Control Status

“**** outputs **** arrow display diagram

UPARROW PIN 12 ISTYPE ‘COM,INVERT’; “ ^
SEGARROW PIN 13 ISTYPE ‘COM,INVERT’; “ |
DNARROW PIN 14 ISTYPE ‘COM,INVERT’; “ v

SEG1,SEG2,SEG12 PIN 15,16,17 ISTYPE ‘COM,INVERT’; “LED Segment Drivers
“ segment display diagram
“ 2
“ —-
“ | 12
“ 2 |
“ —-
“ 2 | | 1
“ | |
“ —-
“ 2

12 1996 ISP Encyclopedia

Using GAL Development Tools

Listing 4. Design Input File for Display Section, Continued

“**** intermediate definitions ****
C,X,H,L=.C.,.X.,1,0;

“**** logic equations ****
equations

UPARROW = MOTION & DIRECTION;
SEGARROW= L1CALL # L2CALL;
DNARROW = MOTION & !DIRECTION;

“**** truth table definition ****
truth_table
([DIRECTION, MOTION] -> [SEG1, SEG2, SEG12]);
 [0 , 0] -> [1 , 0 , 1] ;
 [0 , 1] -> [1 , 0 , 1] ;
 [1 , 0] -> [0 , 1 , 1] ;
 [1 , 1] -> [0 , 1 , 1] ;

end

Listing 5. Expanded Product Terms for Display Section

UPARROW = (MOTION & DIRECTION);
SEGARROW = !(!L1CALL & !L2CALL);
DNARROW = (MOTION & !DIRECTION);
SEG1 = !(DIRECTION);
SEG2 = !(!DIRECTION);
SEG12 = !(0);

Copyright © 1996 Lattice Semiconductor Corporation.

E2CMOS, GAL, ispGAL, ispLSI, pLSI, pDS, Silicon Forest, UltraMOS, Lattice Logo, L with Lattice Semiconductor Corp. and L
(Stylized) are registered trademarks of Lattice Semiconductor Corporation (LSC). The LSC Logo, Generic Array Logic, In-
System Programmability, In-System Programmable, ISP, ispATE, ispCODE, ispDOWNLOAD, ispGDS, ispStarter,
ispSTREAM, ispTEST, ispTURBO, Latch-Lock, pDS+, RFT, Total ISP and Twin GLB are trademarks of Lattice Semiconductor
Corporation. ISP is a service mark of Lattice Semiconductor Corporation. All brand names or product names mentioned are
trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation (LSC) products are made under one or more of the following U.S. and international
patents: 4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296
US, 5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 5,272,666 US, 5,281,906 US, 5,295,095 US, 5,329,179 US, 5,331,590 US, 5,336,951 US,
5,353,246 US, 5,357,156 US, 5,359,573 US, 5,394,033 US, 5,394,037 US, 5,404,055 US, 5,418,390 US, 5,493,205 US,
0194091 EP, 0196771B1 EP, 0267271 EP, 0196771 UK, 0194091 GB, 0196771 WG, P3686070.0-08 WG. LSC does not
represent that products described herein are free from patent infringement or from any third-party right.

The specifications and information herein are subject to change without notice. Lattice Semiconductor Corporation (LSC)
reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors
contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers
obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is
current.

LSC warrants performance of its products to current and applicable specifications in accordance with LSC’s standard
warranty. Testing and other quality control procedures are performed to the extent LSC deems necessary. Specific testing of
all parameters of each product is not necessarily performed, unless mandated by government requirements.

LSC assumes no liability for applications assistance, customer’s product design, software performance, or infringements of
patents or services arising from the use of the products and services described herein.

LSC products are not authorized for use in life-support applications, devices or systems. Inclusion of LSC products in such
applications is prohibited.

LATTICE SEMICONDUCTOR CORPORATION
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.
Tel.: (503) 681-0118
FAX: (503) 681-3037
http://www.latticesemi.com November 1996

	Main Directory
	GAL Hardware and Software Tools
	The Design Process
	Example: Two-Story Elevator Controller

