

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica

Actividad Fundamental 1 (AF1) Electrónica Digital 1

	Hora	NL	Matricula	Nombre		Equipo
	M2 11 2045253 Gard		2045253	García Gaytán	Christian Axel	4
	IVIZ	20	1965452	Martínez Cázares	Gerardo de Jesús	4

En esta actividad fundamental se adquieren los conocimientos y desarrollan las habilidades en el manejo de herramientas de diseño de sistemas digitales, que se evaluarán en el próximo examen de medio curso, por lo que es indispensable entregarla en tiempo y forma.

En esta actividad se solicita:

- 1.- Diseñar, efectuar la simulación y construir el prototipo del sistema digital propuesto, así como documentar el proceso de diseño.
- 2.- Cada uno de los integrantes del equipo debe de subir los archivos entregables solicitados a la plataforma Google Classroom antes de la fecha límite señalada.
- 3.- Una vez cumplido con lo anterior, el equipo debe de solicitar una entrevista presencial con los becarios, para mostrar los prototipos, así como explicar el procedimiento y resultados obtenidos, esto antes de la fecha límite acordada.

Sistema Digital propuesto

El problema de diseño combinacional planteado se refiere a una empresa con cinco accionistas (A, B, C, D y E), cuyas acciones están distribuidas de la siguiente manera:

A=35%, B=35%, C=10%, D=10% y E=10%.

Se requiere diseñar, simular y construir un sistema digital para el escrutinio en la toma de decisiones. La opinión se obtiene a través de botones de votación, uno para cada accionista (A, B, C, D y E respectivamente). Es importante tener en cuenta que cada accionista tiene un porcentaje ponderado en su voto, igual al número de acciones que posee.

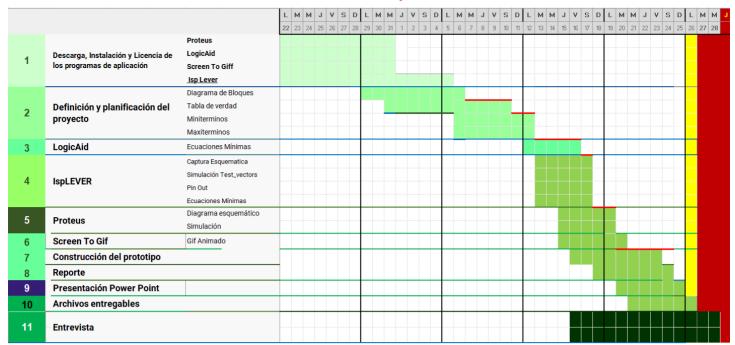
El resultado de la votación será mostrado por medio de dos leds (**L1 y L0**) de salida de la siguiente manera:

L1	L0		
0	0	No Hay resultado o menor o igual a 30%	
0	1	Mayor que 30% 0 Menor o igual a 50%	
1	0	Mayor que 50% y menor o igual a 70%	
1	1	Mayor de 70%	

Los valores de las salidas L1 y L0 se mostrarán en forma visual por medio de Leds en donde el valor de 0 el Led deberá de estar apagado y en el valor de 1 el led deberá de encender.

El diseño del sistema debe tomar en cuenta estas especificaciones y cumplir con los requerimientos mencionados. Se realizará una simulación para verificar su correcto funcionamiento y, posteriormente, se construirá un prototipo físico utilizando componentes electrónicos adecuados.

La fecha límite para subir los archivos es el martes 27 de febrero y para la entrevista miércoles 28 del mismo mes.


	Enero - Febrero 2024					
L	М	М	J	٧	S	D
29	30	31	1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28				
Se previsor, evita contratiempos						
27 fecha limite GC			echa lín ntrevist			

Dr. Arnulfo Treviño Cubero Director de la F.I.M.E

No basta saber, se debe también aplicar. No es suficiente querer, se debe también hacer.

Johann Wolfgang Goethe (1749-1832) Poeta y dramaturgo alemán.

Cronograma Propuesto

Descripción de las Fases

1	Descarga, Instalación y Licencia de los programas de aplicación ispLEVER, PROTEUS, LogicAid y ScreenToGif :		
	Lectura comprensiva del problema, identificación de variables de Entrada y Salida, Diagrama de Bloques		
2	Planteamiento, trasladar el comportamiento a una Tabla de Verdad		
	Obtener las ecuaciones de Minitérminos y/o Maxitérminos en SOP y/o POS según convenga y representarlas también en sus formas canónicas \sum y Π .		
3	Obtener las Ecuaciones mínimas por medio del programa LogicAid (ecuaciones, términos o tabla de verdad), indicando la cantidad de entradas (Input Cost) y la cantidad de compuertas utilizadas (Gate Cost).		
4	Realizar la Captura esquemática Diagrama esquemático compuertas lógicas AON utilizando Schematic del programa IspLEVER (ecuaciones mínimas) de la opción más conveniente SOP o POS.		
Ľ	Generar el Archivo ABV y obtener la Simulación Test_vectors (IspLEVER).		
5	Elaborar el Diagrama lógico en PROTEUS con el Dispositivo AM22V10, usando como entradas interruptores, resistencias y LEDS y como salidas que se muestren a través de Leds.		
6	Generar animación o video de la simulación del funcionamiento de todas las combinaciones posibles (ScreenToGif)		
7	Construir el prototipo		
8	Realizar el Reporte con lo solicitado (ver detalle en la página siguiente).		
9	Realizarla presentación en Power Point con las diapositivas solicitadas		
10	Subir a Google Classroom los archivos entregables solicitados comprimidos en una carpeta en formato ZIP o RAR.		
11	Agendar una entrevista presencial para la presentación del Proyecto todo el equipo (Power Point, ISP, Proteus)		

Reporte (Pdf)

1.- Portada

- a). U.A.N.L. F.I.M.E. (logotipos y nombres) y Nombre del curso
- b). Número y nombre de la actividad
- c). Nombre, número de matrícula del Alumno y Programa Educativo
- d). Hora del grupo y número de lista
- e). Fecha de elaboración.
- f). Tiempo estimado que se le dedico a esta actividad (horas)
- 2.- Redacción del problema.
- 3.- Diagrama de Bloques (Definición de las Entradas y salidas).
- 4.- Tabla de Verdad.
- 5.- Ecuaciones de los minitérminos y/o maxitérminos según convenga (SOP o POS).
- 6.- Ecuaciones mínimas SOP y POS indicando la cantidad de entradas y compuertas
- 7.- Diagrama esquemático (figura del archivo SCH).
- 8.-Código de la simulación ABV (código del archivo).
- 9.- Imagen de la Simulación Test_vectors (captura de pantalla).
- 10.- Diagrama de la distribución de terminales (pin out) mostradas en el del archivo RPT.
- 11.- Imagen del circuito en PROTEUS (usando Logic State como entradas y Logic Probe como salidas).
- 12.- Las Ecuaciones mínimas mostradas en el archivo RPT.
- 13 Archivo JED
- 14.- Foto del prototipo implementado.
- 15.- Bibliografía completa.
- 16.- Conclusiones, cada miembro del equipo debe de redactar su propia conclusión.

Un reporte sin conclusiones carece de valor.

17.- Recomendaciones.

Presentación en Power Point (diapositivas recomendadas para la presentación en la entrevista)

- 1.- Portada.
- 2.- Redacción del problema.
- 3.- Diagrama de Bloques y Tabla de Verdad.
- 4.- Ecuaciones de Minitérminos (SOP) y/o Maxitérminos (POS).
- 5.- Ecuaciones mínimas SOP y POS (LogicAid)
- 6.- Imagen del Diagrama esquemático de compuertas en la forma AON.
- 7.- Imágenes: archivo con código ABV, imagen de la distribución de terminales (pin out).
- 8.- Imagen de la simulación de Test_Vectors.
- 9.- Diagrama lógico en Proteus y Gif animado.
- 10.- Foto del prototipo implementado
- 11.- Conclusiones de cada integrante
- 12.- Recomendaciones.

Antes de agendar la cita para mostrar el prototipo, explicar el procedimiento y resultados obtenidos, cada integrante debe de subir a Google Classroom los archivos entregables listados abajo:

	Archivos Entregables	extensión	
1	Reporte completo	PDF	Tadaa inahiidaa ay uu aala ayahiya ZID a DAD
2	Archivo de Captura Esquemática	SCH	Todos incluidos en un solo archivo ZIP o RAR llamado
3	Archivos de las Ecuaciones mínimas	AID y OUT	AF1MXNLY. AF1 =Actividad Fundamental 1 X =hora, Y =No. de
4	PROTEUS	PSDPRJ	lista
5	Archivo JEDEC	JED	Ejemplo
6	Archivo de Simulación ABEL	ABV	AF1M1NL03:zip
7	Animación de la simulación	GIF	
8	Presentación	PPT	

Importante:

Con el profesor o los becarios podrás solicitar asesorías/revisión de actividades y proyectos, de forma presencial.

Material necesario para el desarrollo de las prácticas y proyectos de Electrónica Digital I Paquete de inicio

Cant.	descripción	
30	Resistores de 330 Ω a 1/4 W	
15	Led's de 5 mm económico diferentes colores, ámbar, rojos y verdes.	
1	Display de 7 segmentos (Cátodo o Ánodo Común)	
1	Tablilla de conexiones (Proto-Board) 1 Bloque 2 Tiras 830 puntos	
1	DIP Switch deslizable (8 interruptores deslizables) tipo TTL	
1	Metro de cable para alambrar calibre 22	
6	Switch Push Micro NO (interruptor de no retención normalmente abierto)	
1	Dispositivo Logico Programable ATF22V10 Microchip o equivalente.	

Paquete pulso

Cant.	descripción		
1	Potenciómetro Miniatura (270º)	5 kΩ	
1	Capacitor electrolítico 25V	470 μF	
1	Capacitor electrolítico 25V	1000 μF	
1	Compuerta Nand de 2 entradas o equivalente	SN7400	
1	Compuerta Not con Schmitt Trigger	SN7414	

Material opcional

Cant.	descripción		
1	Terminal Block		
1	Matriz de transistores Darlington de 50 V y 500 mA	ULN2803	
1	Juego de cables Jumpers para Protoboard		

Sugerencias de proveedores

Proveedor	Dirección	Contacto	
AG Electrónica	Colón 171 Poniente, Mty.	www.agelectronica.com/	
Electrónica 175	Colon 205 Ote.	www.e175.mx	
Electrónica para Estudiantes	Colon 173 Pte.	www.semty.mx	
IRD	Edificio 7 primer piso FIME		
Mecatronium	Máquina expendedora edificio 7 segundo piso FIME	chips.mecatronium.com/	
Zenerbyte	Entrega en FIME	8113984239	

Beneficios del Trabajo en equipo

Es una actividad que favorece el aprendizaje integral de los estudiantes.

Saber trabajar en equipo es una aptitud fundamental necesaria a lo largo de nuestra vida, en especial a nivel laboral como ingeniero.

Aprenderás a trabajar en consonancia con tus compañeros, de manera que será más fácil terminar las actividades dentro del plazo establecido.

En el caso de que surjan problemas, en el equipo se pueden proponer soluciones al respecto trabajando individualmente serían más difíciles de encontrar.

Trabajar junto con otras personas mientras se persigue el mismo objetivo, fomenta entre otras cosas la comunicación, el respeto mutuo, el sentido de la identidad y la solidaridad.

Mejora la comunicación y el diálogo: a la hora de trabajar en equipo surgen situaciones donde las distintas partes no están de acuerdo o expresan diferentes puntos de vista. Aprender a debatir en estos momentos es fundamental para no generar discusiones.

Todo equipo necesita definir sus normas de convivencias, por ejemplo:

1.- Horarios de trabajo

Es necesario empatar agendas, para establecer reuniones periódicas presenciales o en línea, se recomienda por lo menos dos reuniones por semana de una hora de duración.

Iniciando con la lectura comprensiva del problema, en donde se identifican las variables Entrada y Salida, y se elabora el Diagrama de Bloques

2.- Formas de comunicación

La comunicación y el seguimiento son herramientas fundamentales para realizar el trabajo en equipo.

3.- Recursos

Revisar si se cuenta con los elementos suficientes para elaborar el proyecto solicitado.

Nota Importante:

En el caso de que uno o varios de los miembros del equipo, tenga problemas para participar, favor de comunicarlo lo más pronto posible al profesor o becarios para tomar las medidas pertinentes.

"La fuerza del equipo viene de cada miembro. La fuerza de cada miembro es el equipo."

Phil Jackson