

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Coordinación General de Ingeniería Electrónica

P6 - 2024-26

Laboratorio de Electrónica Digital I Sesión 6

Hora	PE	NL	Mat	Apellidos	Nombre	
JM1	IMC	12	2001459	Molina Ramos	Mario Alberto	

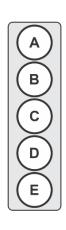
Diseño de sistemas combinacionales

Propósito: Comprensión, análisis y aplicación del método de Diseño de sistemas combinacionales, mediante el diseño, la simulación y construcción de un prototipo.

Método del diseño combinacional con HDL

- 1.- Especificar el sistema.
- 2.-Determinar entradas y salidas (Diagrama de Bloques).

Representar la ecuación en sus formas canónicas SOP Σ y POS Π 4 Ecuaciones Mínimas	ABEL-HDL
3 Trasladar el comportamiento a una tabla de verdad.	Código


- 5.-Simulación.
- 6.- Construcción del prototipo
- 1.- Especificar el sistema Problema propuesto:

Diseñe, realice la simulación y construya un prototipo de un sistema electrónico digital binario para controlar una alarma, la cual está vinculada a cinco detectores denominados A, B, C, D y E.

Cada detector, al ser activado, generará una señal de salida de valor uno; cuando esté desactivado, su salida será cero.

El sistema debe operar de acuerdo con las siguientes condiciones:

- a) La alarma se activará (indicado por una salida AL=1) cuando tres o más detectores estén activados simultáneamente.
- b) Por motivos de seguridad, la alarma también se activará si la configuración de los detectores es A=0, B=0, C=0, D=1 y E=1

2.	 Determinar entradas y salidas (Dibujo del Diagrama de Bloques).						
L							

<u> </u>	CI	2121	CIII	<u>a a</u>	un	a ic	אומג
m	Α	В	С	D	Е	Σ	S
0	0	0	0	0	0		
1	0	0	0	0	1		
2	0	0	0	1	0		
3	0	0	0	1	1		
4	0	0	1	0	0		
5	0	0	1	0	1		
6	0	0	1	1	0		
7	0	0	1	1	1		
8	0	1	0	0	0		
9	0	1	0	0	1		
10	0	1	0	1	0		
11	0	1	0	1	1		
12	0	1	1	0	0		
13	0	1	1	0	1		
14	0	1	1	1	0		
15	0	1	1	1	1		
16	1	0	0	0	0		
17	1	0	0	0	1		
18	1	0	0	1	0		
19	1	0	0	1	1		
20	1	0	1	0	0		
21	1	0	1	0	1		
22	1	0	1	1	0		
23	1	0	1	1	1		
24	1	1	0	0	0		
25	1	1	0	0	1		
26	1	1	0	1	0		
27	1	1	0	1	1		
28	1	1	1	0	0		
29	1	1	1	0	1		
30	1	1	1	1	0		
31	1	1	1	1	1		
		_					

Formas canónicas

	1 ormac canomical					
		No de Combinaciones				
F _(A, B, C, D, E) =	Σ		SOP	1		
F _(A, B, C, D, E) =	П		POS	0		

4.- Ecuaciones Mínimas usando LogicAid

	Ecuaciones	Inputs	Gates	
F _(A, B, C, D, E) =				SOP
F _(A, B, C, D, E) =				POS

Código	Código ABEL-HDL Ecuaciones Mínimas o Tabla de verdad, incluyendo Test_vectors						

Imagen de la simulación Test_vectors					
Distribución de terminales PIN OUT					
Imagen del diagrama esquemático en PROTEUS					
Foto del prototipo armado					
Poto dei prototipo armado					

DC1	https://www.youtube.com/watch?v=HgHd7P8XYRs&t=205s	
2	https://www.youtube.com/watch?v=klSqs3H4ADA&t=17s	
DC3	https://www.youtube.com/watch?v=ym4stKMx_5Y&t=6s	

Reporte sesión 6 (lista de Cotejo, Check List)

17,	Neporte sesion o (lista de Cotejo, Check List)						
1	Portada con datos completos.						
2	Redacción del problema propuesto						
3.	Diagrama de Bloques						
4	Tabla de verdad						
5	Las ecuaciones SOP y POS en la forma Canónica						
6	Ecuaciones mínimas indicando el numero de entradas y el numero de compuertas						
7	El código ABEL-HDL Truth_Table o Ecuaciones incluyendo el test_vectors en el mismo código.						
8	Imagen de la simulación (Test Vectors).						
9	Las ecuaciones mínimas del archivo reporte (RPT).						
10	La distribución de terminales (Pin Out) del archivo reporte (RPT).						
11	Imagen de la simulación del Test_vectors						
8	Imagen del circuito en PROTEUS (usando como entradas y salidas botones, resistencias y Led´s)						
9	Foto del prototipo						
10	Conclusiones						
11	Recomendaciones						

Subir los archivos entregables a Google classroom, antes de la fecha solicitada

Archivos entregables en Zip o RAR	PDF	ABL	JED	Animación	PROTEUS
--------------------------------------	-----	-----	-----	-----------	---------

Una vez cumplido lo anterior es necesario agendar y efectuar la entrevista presencial para presentar el prototipo funcionando correctamente, así como explicar los procedimientos y resultados obtenidos en forma oral y escrita.

"Una mente adaptativa tiene una mejor capacidad de aprendizaje".

Pearl Zhu