

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Coordinación General de Ingeniería Electrónica

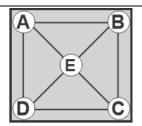
P6 - 2024-28

Laboratorio de Electrónica Digital I Sesión 6

Hora	PE	NL	Mat	Apellidos	Nombre
JM1	IMC	14	1964773	Solís Vazquez	Diego Andrés

Diseño de sistemas combinacionales

Propósito: Comprensión, análisis y aplicación del método de Diseño de sistemas combinacionales, mediante el diseño, la simulación y construcción de un prototipo.


Método del diseño combinacional con HDL

- 1.- Especificar el sistema.
- 2.-Determinar entradas y salidas (Diagrama de Bloques).

4 Ecuaciones Mínimas	ABEL-HDL
Representar la ecuación en sus formas canónicas SOP Σ y POS Π	Código
3 Trasladar el comportamiento a una tabla de verdad.	0111

- 5.-Simulación.
- 6.- Construcción del prototipo
- 1.- Especificar el sistema Problema propuesto:

Diseñe, efectúe la simulación y construya un prototipo de un sistema electrónico digital binario, para un proceso de inspección de calidad, que consta de un arreglo de cinco fotoceldas llamadas A, B, C, D y E, mostrado en la figura, las fotoceldas se consideran activadas por medio de un valor de 1 lógico y desactivadas por medio de un 0 lógico.

El sistema indicara por medio de una salida S =1, solo cuando tres fotoceldas están activadas y éstas sean adyacentes

2. <u>- D</u>	eterminar entradas y salidas (Dibu	ijo del Diagrama de Bloq	jues).	

<u> </u>	CI	2121	CIII	<u>a a</u>	un	a ic	אומג
m	Α	В	С	D	Е	Σ	S
0	0	0	0	0	0		
1	0	0	0	0	1		
2	0	0	0	1	0		
3	0	0	0	1	1		
4	0	0	1	0	0		
5	0	0	1	0	1		
6	0	0	1	1	0		
7	0	0	1	1	1		
8	0	1	0	0	0		
9	0	1	0	0	1		
10	0	1	0	1	0		
11	0	1	0	1	1		
12	0	1	1	0	0		
13	0	1	1	0	1		
14	0	1	1	1	0		
15	0	1	1	1	1		
16	1	0	0	0	0		
17	1	0	0	0	1		
18	1	0	0	1	0		
19	1	0	0	1	1		
20	1	0	1	0	0		
21	1	0	1	0	1		
22	1	0	1	1	0		
23	1	0	1	1	1		
24	1	1	0	0	0		
25	1	1	0	0	1		
26	1	1	0	1	0		
27	1	1	0	1	1		
28	1	1	1	0	0		
29	1	1	1	0	1		
30	1	1	1	1	0		
31	1	1	1	1	1		
		_					

Formas canónicas

		No de Combinaciones		
F _(A, B, C, D, E) =	Σ		SOP	1
F _(A, B, C, D, E) =	П		POS	0

4.- Ecuaciones Mínimas usando LogicAid

	Ecuaciones	Inputs	Gates	
F _(A, B, C, D, E) =				SOP
F _(A, B, C, D, E) =				POS

Código	ABEL-HDL E	cuaciones Mí	nimas o Tabla	a de verdad,	incluyendo T	est_vectors	

lmagen de la simulación Test_vectors
Distribución de terminales PIN OUT
Imagen del diagrama esquemático en PROTEUS
Foto del prototipo armado
Poto dei prototipo armado

Para la realización de este proyecto formativo se te recomienda consultar los videos

siguientes

DC1	https://www.youtube.com/watch?v=HgHd7P8XYRs&t=205s	
2	https://www.youtube.com/watch?v=klSqs3H4ADA&t=17s	
DC3	https://www.youtube.com/watch?v=ym4stKMx 5Y&t=6s	

Reporte sesión 6 (lista de Cotejo, Check List)

L	eporte sesion 6 (lista de Cotejo, Check List)
1	Portada con datos completos.
2	Redacción del problema propuesto
3.	Diagrama de Bloques
4	Tabla de verdad
5	Las ecuaciones SOP y POS en la forma Canónica
6	Ecuaciones mínimas indicando el numero de entradas y el numero de compuertas
7	El código ABEL-HDL Truth_Table o Ecuaciones incluyendo el test_vectors en el mismo código.
8	Imagen de la simulación (Test Vectors).
9	Las ecuaciones mínimas del archivo reporte (RPT).
10	La distribución de terminales (Pin Out) del archivo reporte (RPT).
11	Imagen de la simulación del Test_vectors
8	Imagen del circuito en PROTEUS (usando como entradas y salidas botones, resistencias y Led´s)
9	Foto del prototipo
10	Conclusiones
11	Recomendaciones

Subir los archivos entregables a Google classroom, antes de la fecha solicitada

en Zip o RAR

Una vez cumplido lo anterior es necesario agendar y efectuar la entrevista presencial para presentar el prototipo funcionando correctamente, así como explicar los procedimientos y resultados obtenidos en forma oral y escrita.

"Una mente adaptativa tiene una mejor capacidad de aprendizaje".

Pearl Zhu