

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica

Coordinación General de Ingeniería Electrónica

P1 - 2024

Laboratorio de Electrónica Digital I Sesión 6

Hora	PE	NL	Mat	Apellidos	Nombre
MM1	IMC	13	1926053	Lujan Arce	Adrián Eduardo

Diseño de sistemas combinacionales

Propósito: Comprensión, análisis y aplicación del método de Diseño de sistemas combinacionales, mediante el diseño, la simulación y construcción de un prototipo

Método del diseño combinacional con HDL

- 1.- Especificar el sistema.
- 2.-Determinar entradas y salidas (Diagrama de Bloques).

3 Trasladar el comportamiento a una tabla de verdad.	Código			
Representar la ecuación en sus formas canónicas SOP Σ y POS Π				
4 Ecuaciones Mínimas	ABEL-HDL			

- 5.-Simulación.
- 6.- Construcción del prototipo
- 1.- Especificar el sistema Problema propuesto:

Diseñe y efectué la simulación de un sistema digital binario, para el control de alerta de un sistema de producción que es alimentado por 5 generadores llamados A, B, C, D y E, distribuidos como lo muestra la figura.

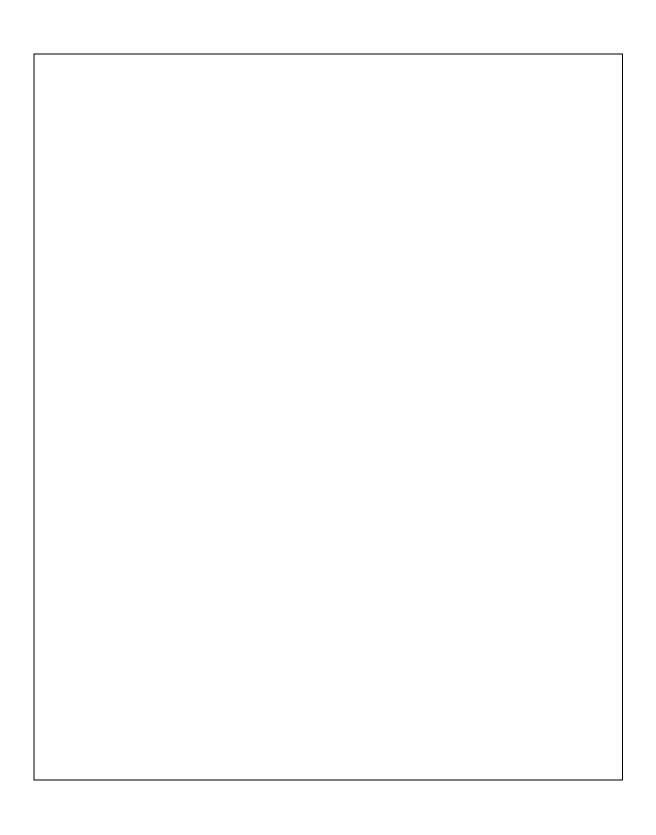
Si el generador trabaja correctamente el sistema lo indica por medio de una señal baja (0) y en caso de falla una señal alta (1).

Para asegurar el buen funcionamiento del sistema se requieren dos salidas que corresponden a dos tipos de señales de alerta con las siguientes condiciones:

- 1.- Alarma luminosa (AL) que se activa AL=1, sí solo dos generadores contiguos fallan o solo tres generadores contiguos fallan, incluyendo el caso en donde todos los generadores fallan.
- 2.- Alarma acústica (AA) que toma el valor de AA=1, cuando al menos tres generadores fallan y éstos sean todos contiguos, excluyendo el caso en donde todos los generadores fallan

 Determinar entradas y salidas (Dibujo del Diagrama de Bloques).						

3.- Trasladar el comportamiento del sistema a una Tabla de verdad


	anne	E	ntrad	as	Sal	idas	
m	Α	В	С	D	Е	Al	AA
0	0	0	0	0	0		
1	0	0	0	0	1		
2	0	0	0	1	0		
3	0	0	0	1	1		
4	0	0	1	0	0		
5	0	0	1	0	1		
6	0	0	1	1	0		
7	0	0	1	1	1		
8	0	1	0	0	0		
9	0	1	0	0	1		
10	0	1	0	1	0		
11	0	1	0	1	1		
12	0	1	1	0	0		
13	0	1	1	0	1		
14	0	1	1	1	0		
15	0	1	1	1	1		
16	1	0	0	0	0		
17	1	0	0	0	1		
18	1	0	0	1	0		
19	1	0	0	1	1		
20	1	0	1	0	0		
21	1	0	1	0	1		
22	1	0	1	1	0		
23	1	0	1	1	1		
24	1	1	0	0	0		
25	1	1	0	0	1		
26	1	1	0	1	0		
27	1	1	0	1	1		
28	1	1	1	0	0		
29	1	1	1	0	1		
30	1	1	1	1	0		
31	1	1	1	1	1	_	_

Formas canónicas

Torring ourierings						
		No de Combinaciones				
FAI (A, B, C, D, E) =	Σ		SOP	1		
FAA _(A, B, C, D, E) =	Σ		301			
FAI _(A, B, C, D, E) =	П		POS	0		
FAA (A, B, C, D, E) =	П					

4.- Ecuaciones Mínimas usando LogicAid

		In	Gates
FAI (A, B, C, D, E) =			
FAA _(A, B, C, D, E) =			
FAI (A, B, C, D, E) =			
FAA _(A, B, C, D, E) =			

Imagen de la simulación Test_vectors					
Distribución de terminales PIN OUT					
Imagen del diagrama esquemático en PROTEUS					
Fate del mustatine amusedo					
Foto del prototipo armado					

Para la realización de este proyecto formativo se te recomienda consultar los videos siguientes

DC1	https://www.youtube.com/watch?v=HgHd7P8XYRs&t=205s	
2	https://www.youtube.com/watch?v=klSqs3H4ADA&t=17s	
DC3	https://www.youtube.com/watch?v=ym4stKMx_5Y&t=6s	

Reporte sesión 6 (lista de Cotejo, Check List)

176	eporte Sesion 6 (lista de Cotejo, Check List)
1	Portada con datos completos.
2	Redacción del problema propuesto
3.	Diagrama de Bloques
4	Tabla de verdad
5	Las ecuaciones SOP y POS en la forma Canónica
6	Ecuaciones mínimas indicando el numero de entradas y el numero de compuertas
7	El código ABEL-HDL Truth_Table o Ecuaciones incluyendo el test_vectors en el mismo código.
8	Imagen de la simulación (Test Vectors).
9	Las ecuaciones mínimas del archivo reporte (RPT).
10	La distribución de terminales (Pin Out) del archivo reporte (RPT).
11	Imagen de la simulación del Test_vectors
8	Imagen del circuito en PROTEUS (usando como entradas y salidas botones, resistencias y Led´s)
9	Foto del prototipo
10	Conclusiones
11	Recomendaciones

Subir los archivos entregables a Google classroom, antes de la fecha solicitada

Archivos entregables en Zip o RAR PDF ABL JED Animación P	TEUS
---	------

Una vez cumplido lo anterior es necesario agendar y efectuar la entrevista presencial para presentar el prototipo funcionando correctamente, así como explicar los procedimientos y resultados obtenidos en forma oral y escrita.

"Una mente adaptativa tiene una mejor capacidad de aprendizaje".

Pearl Zhu