

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Coordinación General de Ingeniería Electrónica

P14 - 2024

Laboratorio de Electrónica Digital I Sesión 6

Hora	PE	NL	Matricula	Apellidos	Nombre
MM3	IMC	13	2006536	Ramos Degollado	Orlando Jerman

Diseño de sistemas combinacionales

Propósito: Comprensión, análisis y aplicación del método de Diseño de sistemas combinacionales, mediante el diseño, la simulación y construcción de un prototipo

Método del diseño combinacional con HDL

- 1.- Especificar el sistema.
- 2.-Determinar entradas y salidas (Diagrama de Bloques).

3 Trasladar el comportamiento a una tabla de verdad.	26.11
Representar la ecuación en sus formas canónicas SOP Σ y POS Π	Código ABEL-HDL
4 Ecuaciones Mínimas	ABEL-HUL

- 5.-Simulación.
- 6.- Construcción del prototipo
- 1.- Especificar el sistema Problema propuesto:

Textura es la organización de una superficie como un conjunto de elementos repetidos. Un proceso automático para clasificar texturas artificiales consta de un sensor de 5 puntos (ver la figura) envía señales a un circuito cuya función es identificar los siguientes elementos

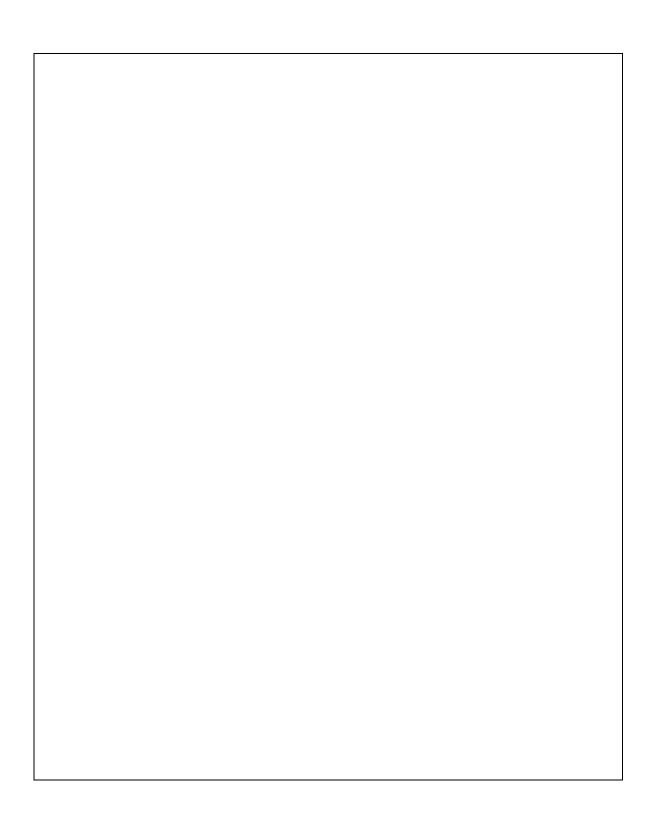
Considerando que sensor activo produce un 1 lógico, y un sensor desactivado un cero lógico.

En todos los casos que inspecciona el sensor, se activan al menos dos puntos de la rejilla. Diseñe, efectué la simulación y construya un prototipo de un sistema digital se activa una salida llamada OK, Cuando el resultado de la inspección coincida con alguno de los diseños mostrados.

Z Determinal entrauas y	Sandas (Dibujo dei Diagrama de Bioques).	

3.- Trasladar el comportamiento del sistema a una Tabla de verdad

m	Α	В	С	D	Е	ок
0	0	0	0	0	0	
1	0	0	0	0	1	
2	0	0	0	1	0	
3	0	0	0	1	1	
4	0	0	1	0	0	
5	0	0	1	0	1	
6	0	0	1	1	0	
7	0	0	1	1	1	
8	0	1	0	0	0	
9	0	1	0	0	1	
10	0	1	0	1	0	
11	0	1	0	1	1	
12	0	1	1	0	0	
13	0	1	1	0	1	
14	0	1	1	1	0	
15	0	1	1	1	1	
16	1	0	0	0	0	
17	1	0	0	0	1	
18	1	0	0	1	0	
19	1	0	0	1	1	
20	1	0	1	0	0	
21	1	0	1	0	1	
22	1	0	1	1	0	
23	1	0	1	1	1	
24	1	1	0	0	0	
25	1	1	0	0	1	
26	1	1	0	1	0	
27	1	1	0	1	1	
28	1	1	1	0	0	
29	1	1	1	0	1	
30	1	1	1	1	0	
31	1	1	1	1	1	


Formas canónicas

		No de Combinaciones		
FOK _(A, B, C, D, E) =	Σ		SOP	1
FOK _(A, B, C, D, E) =	П		POS	0

4.- Ecuaciones Mínimas usando LogicAid

		ln	Gates
FOK(A, B, C, D, E) =			
FOK _(A, B, C, D, E) =			

Código ABEL-HDL Ecuaciones Mínimas o Tabla de verdad, incluyendo Test_vectors

Imagen de la simulación Test_vectors
Distribución de terminales PIN OUT
Imagen del diagrama esquemático en PROTEUS
Foto del prototipo armado

Para la realización de este proyecto formativo se te recomienda consultar los videos siguientes

DC1	https://www.youtube.com/watch?v=HgHd7P8XYRs&t=205s	
2	https://www.youtube.com/watch?v=klSqs3H4ADA&t=17s	
DC3	https://www.youtube.com/watch?v=ym4stKMx_5Y&t=6s	

Reporte sesión 6 (lista de Cotejo, Check List)

	eporte Sesion o (lista de Cotejo, Crieck List)
1	Portada con datos completos.
2	Redacción del problema propuesto
3.	Diagrama de Bloques
4	Tabla de verdad
5	Las ecuaciones SOP y POS en la forma Canónica
6	Ecuaciones mínimas indicando el numero de entradas y el numero de compuertas
7	El código ABEL-HDL Truth_Table o Ecuaciones incluyendo el test_vectors en el mismo código.
8	Imagen de la simulación (Test Vectors).
9	Las ecuaciones mínimas del archivo reporte (RPT).
10	La distribución de terminales (Pin Out) del archivo reporte (RPT).
11	Imagen de la simulación del Test_vectors
8	Imagen del circuito en PROTEUS (usando como entradas y salidas botones, resistencias y Led´s)
9	Foto del prototipo
10	Conclusiones
11	Recomendaciones

Subir los archivos entregables a Google classroom, antes de la fecha solicitada

Archivos entregables	PDF	ABL	IED	Animación	PROTEUS
en Zip o RAR	PDF	ADL	JED	Allillacion	PROTEUS

Una vez cumplido lo anterior es necesario agendar y efectuar la entrevista presencial para presentar el prototipo funcionando correctamente, así como explicar los procedimientos y resultados obtenidos en forma oral y escrita.

"Una mente adaptativa tiene una mejor capacidad de aprendizaje".

Pearl Zhu