

PF7 ED - 2025

Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Coordinación General de Ingeniería Electrónica

Electrónica Digital Proyecto Formativo 7 Diseño de sistemas combinacionales

Comprensión, análisis, aplicación del Diseño y la simulación de sistemas combinacionales usando como ejercicio el problema 4 propuesto en tu examen de medio curso, mediante el uso de Lenguaje de Descripción de Hardware HDL y su simulación en PROTEUS usando un Dispositivo Lógico Programable PLD en su implementación del prototipo.

Método propuesto para el diseño combinacional con HDL (Flujo de diseño)

- 1.- Especificar el sistema.
- 2.-Determinar entradas y salidas (Diagrama de Bloques).3.- Trasladar el comportamiento a una tabla de verdad.

	Representar la ecuación en sus formas canónicas SOP Σ y POS Π	Código ABEL-HD
	4 Ecuaciones Mínimas	ABEL-ND
	5Simulación. 6 Construcción del prototipo	
1	Especificar el sistema: Problema No 4 propuesto en tu examen Redacción:	
2	Determinar entradas y salidas (Dibujo del Diagrama de Bloques).	

ILO	uei	31	sten	ıa a	una	ıaı	na ue
m							
0	0	0	0	0	0		
1	0	0	0	0	1		
2	0	0	0	1	0		
3	0	0	0	1	1		
4	0	0	1	0	0		
5	0	0	1	0	1		
6	0	0	1	1	0		
7	0	0	1	1	1		
8	0	1	0	0	0		
9	0	1	0	0	1		
10	0	1	0	1	0		
11	0	1	0	1	1		
12	0	1	1	0	0		
13	0	1	1	0	1		
14	0	1	1	1	0		
15	0	1	1	1	1		
16	1	0	0	0	0		
17	1	0	0	0	1		
18	1	0	0	1	0		
19	1	0	0	1	1		
20	1	0	1	0	0		
21	1	0	1	0	1		
22	1	0	1	1	0		
23	1	0	1	1	1		
24	1	1	0	0	0		
25	1	1	0	0	1		
26	1	1	0	1	0		
27	1	1	0	1	1		
28	1	1	1	0	0		
29	1	1	1	0	1		
30	1	1	1	1	0		
31	1	1	1	1	1		

Formas canónicas

			No de Combinaciones		
FS ₍) =	Σ		SOP	1
FS ₍) =	П		POS	0

Nota: En la forma Canónica Σ se indica el número de combinaciones de la tabla de verdad cuyas salidas igual a uno. En la forma Canónica Π se indica el número de combinaciones de la tabla de verdad cuyas salidas igual a cero.

4.- Ecuaciones Mínimas usando LogicAid

	ecuación	Inputs	Gates
FS() =			

Código ABEL-HDL Ecuaciones Mínimas o Tabla de verdad, incluyendo Test_vectors					

lmagen de la simulación Test_vectors
Distribución de terminales PIN OUT
lmagen del diagrama esquemático en PROTEUS
Foto del prototipo armado
Foto del prototipo armado

Para la realización de este proyecto formativo se te recomienda consultar los videos

siguientes

DC1	https://www.youtube.com/watch?v=HgHd7P8XYRs&t=205s	
2	https://www.youtube.com/watch?v=klSqs3H4ADA&t=17s	
DC3	https://www.youtube.com/watch?v=ym4stKMx_5Y&t=6s	

K	Reporte Proyecto Formativo 6 (lista de Cotejo, Check List)					
1	Portada con datos completos.					
2	Redacción del problema propuesto					
3.	Diagrama de Bloques					
4	Tabla de verdad (archivo Excel)					
5	Las ecuaciones SOP y POS en las formas Canónicas \sum y Π .					
6	Ecuación mínima indicando el número de entradas y el número de compuertas					
7	El código ABEL-HDL Truth_Table o Ecuaciones incluyendo el test_vectors en el mismo código.					
8	Imagen de la simulación (Test Vectors).					
9	La ecuación mínima del archivo reporte (RPT).					
10	La distribución de terminales (Pin Out) del archivo reporte (RPT).					
11	Imagen de la simulación del Test_vectors					
8	Imagen del circuito en PROTEUS (usando como entradas y salidas botones, resistencias y Led´s)					
9	Foto del prototipo					
10	Conclusiones					
11	Recomendaciones					

Subir los archivos entregables a Google Classroom, antes de la fecha solicitada

Archivos entregables en Zip o RAR	PDF	XLS	ABL	JED	Animación	PROTEUS
--------------------------------------	-----	-----	-----	-----	-----------	---------

Presentar el prototipo funcionando por medio de una entrevista y comunicar en forma oral y escrita los procedimientos y resultados obtenidos.

> "La calidad nunca es un accidente; siempre es el resultado de un esfuerzo de la inteligencia"

> > JOHN RUSKIN